

3D FFTs for electronic structure calculations: Mixed programming models and communication strategies for many core architectures

Andrew Canning*, J. Shalf, L-W. Wang, H. Wasserman, M. Gajbe, N. Wright and S. Anderson (COE, Cray)

CRD, NERSC & UC Davis*

Outline

- Introduction to DFT Plane Wave Electronic Structure Calculations
- Parallel Data layouts and communication structures
- Scaling of our 3d FFT on various computers (Cray XT, IBM BG)
- Mixed OpenMP/MPI vs. MPI
- Scaling of other parts of solver (subspace diag)
- Full code performance

First Principles (Electronic Structure Calculations)

- First Principles: Full quantum mechanical treatment of electrons
- Gives accurate results for Structural and Electronic Properties of Materials, Molecules, Nanostructures
- Computationally very expensive (eg. grid of > 1 million points for each electron)
- Density Functional Theory (DFT) Plane Wave Based (Fourier) methods probably largest user of Supercomputer cycles in the world

Ba₂YCl₇:Ce predicted to be a very bright scintillator. Made by experimentalists and found to be one of the brightest known scintillators. Initial Patent Filing taken out for Material Ba₂YCl₇:Ce

Ab initio Method: Density Functional Theory (Kohn 98 Nobel Prize)

Many Body Schrodinger Equation (exponential scaling)

$$\left\{-\sum_{i} \frac{1}{2} \nabla_{i}^{2} + \sum_{i,j} \frac{1}{|r_{i} - r_{j}|} + \sum_{i,l} \frac{Z}{|r_{i} - R_{I}|}\right\} \Psi(r_{1},...r_{N}) = E\Psi(r_{1},...r_{N})$$

Kohn Sham Equation (65): The many body ground state problem can be mapped onto a single particle problem with the same electron density and a different effective potential (cubic scaling).

$$\left\{-\frac{1}{2}\nabla^{2} + \int \frac{\rho(r')}{|r-r'|}dr' + \sum_{I} \frac{Z}{|r-R_{I}|} + V_{XC}\right\}\psi_{i}(r) = E_{i}\psi_{i}(r)$$

$$\rho(r) = \sum_{i} |\psi_{i}(r)|^{2} = |\Psi(r_{1},...r_{N})|^{2}$$
Use Local Density Approximation
(LDA) for $V = [\rho(r)]$ (good Society)

(LDA) for $V_{xC}[\rho(r)]$ (good Si,C)

CRD Plane-wave Pseudopotential Method in DFT

(Self-consistent)

$$\left| \{ -\frac{1}{2} \nabla^2 + \int \frac{\rho(r')}{|r - r'|} dr' + \sum_{I} \frac{Z}{|r - R_I|} + V_{XC}(\rho(r)) \} \psi_j(r) = E_j \psi_j(r) \right|$$

Solve Kohn-Sham Equations self-consistently for electron wavefunctions within the Local Density Appoximation

1. Plane-wave expansion for
$$\psi_{j,k}(r) = \sum_{g} C_g^j(k) e^{i(g+k).r}$$

2. Replace "frozen" core by a pseudopotential

Different parts of the Hamiltonian calculated in different spaces (Fourier and real) 3d FFT

Self-consistent Calculation

 $\{\psi_i\}_{i=1,..,N}$

 $\rho(r) = \sum_{i}^{N} |\psi_{i}(r)|^{2}$

 $V(r, \rho)$

N electrons
N wave functions
lowest N
eigenfunctions

Selfconsistency

CRD Computational Considerations

$$\{-\frac{1}{2}\nabla^2 + \int \frac{\rho(r')}{|r-r'|} dr' + \sum_{I} \frac{Z}{|r-R_I|} + V_{XC}(\rho(r))\} \psi_j(r) = E_j \psi_j(r)$$

- Largest DFT type calculations (eg 5,000 Si atoms to calculate dopant levels)
- Matrix size, M = 1.25 million
- Number of required eigenpairs, N = 10,000
- Matrix never computed explicitly (available through mat-vec product)
- Matrix is dense (in Fourier or Real space)
- Each SCF step we have good guess for eigenvectors (from previous step)
- Want to perform many moderate sized 3d FFTs (512³ largest systems studied!)
- Diagonal KE term dominant, use as preconditioner $-\frac{1}{2}\nabla^2\psi_i(r) = -\frac{1}{2}g^2\psi_i(r)$

R D Most Costly parts of CG based Solver

$$\{-\frac{1}{2}\nabla^{2} + \int \frac{\rho(r')}{|r-r'|} dr' + \sum_{I} \frac{Z}{|r-R_{I}|} + V_{XC}(\rho(r))\} \psi_{j}(r) = E_{j}\psi_{j}(r)$$

Computational Task (CG solver)	Scaling
Orthogonalization	MN ²
Subspace (Krylov) diagonalization	N ³
3d FFTs (most communications)	NMIogM
Nonlocal pseudopotential	MN ² (N ² real space)

N: number of eigenpairs required $(\psi_j(r), E_j)$ (lowest in spectrum)

M: matrix (Hamiltonian) dimension (M ~ 200N)

CRD Load Balancing, Parallel Data

- Wavefunctions stored as spheres of points (100-1000s spheres for 100s atoms)
- Data intensive parts (BLAS) proportional to number of Fourier components
- \bullet Pseudopotential calculation, Orthogonalization scales as N^3 (atom system)
- FFT part scales as N²logN

Data distribution: load balancing constraints (Fourier Space):

- each processor should have same number of Fourier coefficients (N³ calcs.)
- each processor should have complete columns of Fourier coefficients (3d FFT)

$$-rac{1}{2}
abla^2\psi_i(r)$$

Give out sets of columns of data to each processor

CRD Parallel 3d FFT on NxNxN (x,y,z)

grid

- 1. Perform 1d FFTs on N^2 x direction columns
 - 2. Transpose $(x,y,z) \rightarrow (y,z,x)$
- 3. Perform 1d FFTs on N^2 y direction columns
 - 4. Transpose (y,z,x) -> (z,y,x)
- 5. Perform 1d FFTs on N^2 z direction columns
 - 6. Transpose (z,y,x) -> (x,y,z) optional

Scaling Issues (bandwidth and latency):

- computations/communications ~ $N^2N\log N/N^3 = \log N \sim O(10)$
- message size ~ (#nproc)⁻² 1d layout (#nproc)^{-3/2} 2d layout

Specialized 3d FFT for Electronic Structure Codes (Plane Waves/Fourier)

- Works for any grid size on any number of processors
- Only non-zero elements communicated/calculated
- Most communication in global transpose (b) to (c) little communication (d) to (e)
- Much faster than vendor supplied 3d-FFT (no grid size limitations)
- Used in many codes (PARATEC, PETot, ESCAN, GIT code etc.)

Cray XT4 (Franklin, NERSC, LBNL)

- Cray XT4 (NERSC computer center, Lawrence Berkeley Lab.)
- Node: Quad core Opteron 2.3 GHz (peak 9.2 Gflops)
- System: 9,572 compute nodes, 38,288 processor cores
- Interconnect: 3d Torus
- Peak speed: 352 TFlop/sec
- 11th on Top500 list

Results: 3d-FFT 512³ grid on Cray XT4

- Strong scaling tests on 512³ grid forward+reverse 3d FFT
- 512³ grid corresponds to 1000s atoms in real code, 1000s electrons (grids)
- ~51400 columns in Fourier space for each electron
- Written in Fortran + MPI + FFTW for 1d FFTs
- Versions use MPI_ISENDS and MPI_RECVs/IRECVS or MPI_ALLTOALLV (MPICH2)
- Blocked versions (bl40) perform 40 3d FFTs and aggregate messages (40 times larger)

Procs.	isendrecv	Isendirecv_all	alltoallv	Isendrecv_bl40	alltoallv_bl40
128	0.4139 s	0.3082	0.3605		0.3663
256	0.2730 s	0.1899	0.2123	0.2132	0.1921
512	0.3176 s	0.1725	0.1743	0.1168	0.1004
1024	6.2567 s	0.2499	0.1969	0.1310	0.0558
2048	7.9659 s	0.4469	0.2808	0.2355	0.0370
4096	8.0062 s	0.4726	0.3077	0.3862	0.0312
8192		0.2514	0.2375	0.3263	0.0221
16384			0.1715		0.0136

Results: Multicore tests for 3d-FFT 512³ grid on Cray XT4

- Strong scaling tests on 512³ grid forward+reverse 3d FFT
- 1 to 4 cores per node (each node has Quad core Opteron)
- Memory contention on the node main reason for much slower 4 core performance

Procs. cores	alltoallv_bl (4cores)	alltoallv_bl (2cores)	alltoallv_bl (1core)
128	0.3663	0.2544	0.2120
256	0.1921	0.1301	0.1124
512	0.1004	0.0699	0.0596
1024	0.0558	0.0379	0.0325
2048	0.0370	0.0235	0.0232

Results: Strong Scaling tests for 3d-FFT 512³ grid on IBM BG/P

- IBM Blue Gene/P system (Intrepid) Argonne National Laboratory
- Node: PowerPC Quad core 450 850 MHz (3.4 GFlops)
- System: 40,960 nodes (163,840 processor cores)
- Peak Speed: 557 Teraflops
- Interconnect, low latency 3D-torus, scalable collective network, fast barrier network
- 7th on top500 list

Procs.	isendrecv	Isendirecv_s	alltoallv	Isendrecv_bl40	alltoallv_bl40
512	0.2413 s		0.1768		
1024	0.1911 s	0.1232	0.0929	0.1377	0.1150
2048	0.9008 s	0.0636	0.0396	0.0843	0.0646
4096	6.5026 s	0.0758	0.0346	0.1611	0.0303
8192	41.494 s	0.0979	0.0342	1.0962	0.0257
16384		0.1175	0.0295	5.1327	0.0124

Very good scaling to 16K processors for alltoallv_bl (better than XT4)

Why we don't use a library 3d FFT!

- No 3d FFT libs. that can run any size grid on any number of procs. Grid sizes determined by #atoms (P3DFFT the closest to our needs!)
- Need a complex to complex 3d FFT (P3DFFT is real to complex)
- Would need to transform the data from our load balanced sphere to data layout to use libs. (like an extra transpose)
- No libs. can do blocked 3d FFTs to avoid latency issues
- No libs. Can take advantage of small sphere in Fourier space (we would have to pad system with zeros to full grid size)

CRD Communication costs for transposes (N³ grid): 1d and 2d processor layout for 3d FFT

1d

2"	nd Transpo	ose	
A	1	→	
9	2		
ő	3		
S	4		
1	5		
<u> </u>	6		
ts	7		
	8		
V	9		

2d

2 nd	Transp	øse	
★	2	3	
st Transpose	5	6	
ts 7	8	9	

1st Transpose:

• Messages: (#nproc)² alltoall messages, size: (N³)/(#nproc)²

2nd Transpose:

- No communication (#nproc < 512)
- Local limited comms if #nproc > 512

 $(\#nproc)^2$ messages, N³ data transfer (N<512)

1st Transpose:

• Messages: (#nproc) $^{3/2}$ messages along rows size: $(N^3)/(\#nproc)^{3/2}$

2nd Transpose:

• Messages: $(\#nproc)^{3/2}$ messages along cols. size: $(N^3)/(\#nproc)^{3/2}$

2(#nproc) ^{3/2} messages, 2N³ data transfer

Comparison to P3DFFT and 3d FFTW on Cray XT4

Strong scaling tests on 512³ grid forward+reverse 3d FFT Time for P3DFFT real to complex doubled, time in brackets is for real to complex

Procs.	alltoallv_bl40	P3DFFT [1d proc. layout]	P3DFFT [2d proc layout]	3d FFTW
128	0.3663 s	0.4988 (0.2494) [1x128]	1.0498 (0.5249) [8x16]	1.1275
256	0.1921 s	0.3228 (0.1614) [1x256]	0.5450 (0.2725) [16x16]	0.6235
512	0.1004 s	0.2938 (0.1469) [1x512]	0.2824 (0.1412) [16x32]	1.4063
1024	0.0558 s	0.3050 (0.1525) [2x512]	0.1236 (0.0618) [32x32]	
2048	0.0370 s	0.2370 (0.1185) [4x512]	0.0766 (0.0383) [32x64]	
4096	0.0312 s	0.2154 (0.1077) [8x512]	0.0698 (0.0349) [64x64]	
8192	0.0221 s	0.1659 (0.0829) [16x512]	0.0874 (0.0437) [64x128]	
16384	0.0136 s		0.0958 (0.0479) [128x128]	

Absolute performance and scaling is much better for our 3d FFTs (P3DFFT does not scale past 2K processors)

CRD PARATEC (PARAllel Total Energy Code)

- PARATEC performs first-principles quantum mechanical total energy calculation using pseudopotentials & plane wave basis set
- Written in F90 and MPI
- Designed to run on large parallel machines IBM SP etc. but also runs on PCs
- PARATEC uses all-band CG approach to obtain wavefunctions of electrons (blocks comms. Specialized 3dffts)
- Generally obtains high percentage of peak on different platforms (uses BLAS3 and 1d FFT libs)
- Developed with Louie and Cohen's groups (UCB, LBNL)

Overall ratio calcs./communications ~ N (not logN)

PARATEC: Performance

Problem	Duo	Bassi N (IBM Po		Jaquard I (Opteron)		Thunder (Itanium)		Franklin (Cray XT		NEC ES	(SX6)	IBM B	G/L
Problem	Proc	Gflops/ Proc	% peak	Gflops/ Proc	% peak	Gflops/ Proc	% peak	Gflops/ Proc	% peak	Gflops/ Proc	% peak	Gflops/ Proc	% peak
400	128	5.49	72%			2.8	51%			5.1	64%		
488 Atom	256	5.52	73%	1.98	45%	2.6	47%	3.36	65%	5.0	62%	1.21	43%
CdSe Quantu	512	5.13	67%	0.95	21%	2.4	44%	3.15	61%	4.4	55%	1.00	35%
m Dot	1024	3.74	49%			1.8	32%	2.93	56%	3.6	46%		
	2048							2.37	46%	2.7	35%		

- ❖ Grid size 252³
- All architectures generally achieve high performance due to computational intensity of code (BLAS3, FFT)
- ES achieves highest overall performance : 5.5Tflop/s on 2048 procs (5.3 Tflops on XT4 on 2048 procs in single proc. node mode)
- FFT used for benchmark for NERSC procurements (run on up to 18K procs on Cray XT4, weak scaling)
- Vectorisation directives and multiple 1d FFTs required for NEC SX6

PARATEC: Performance (new code)

		Franklin N	NERSC (Cray XT4)
Problem	Proc	Gflops/ Proc	speedup
488 Atom	128	304.7s	1.0 (1)
Atom CdSe Quantu	256	177.3s	1.72 (2)
m	512	84.33s	3.61 (4)
Dot	1024	43.25s	7.05 (8)
	2048	25.93s	11.75 (16)
	4096	20.09s	15.16 (32)

- Grid size 252³ (larger system 1000 atom being run will give better scaling on other parts of code)
- Need to recode many other parts of code so memory etc. scales better

Other plane wave DFT code:

- QBox (also CPMD) get higher levels of scaling via 3 level parallelism:
- QBox Gordon Bell SC06: 64K nodes on BG/L (207 TFlops) 1000 atoms metal (larger than our system)
- 64k = (8 k points) x (16 bands) x (512 for 3d FFT)

3d FFT Mixed OpenMP/MPI version

Motivation: One MPI process per node allows us to send fewer larger messages (n²_{nodes} vs. n²_{tot#cores})

Three computationally distinct parts

- 1. 1d FFTs Parallelizes well with OpenMP (similar performance to pure MPI version)
- 2. Gather/Scatter operations used before and after communications to perform transposes OpenMP version slower than pure MPI (small work load for each thread)
- **3. MPI alltoall communication step** (large gain from fewer, larger messages)

3d FFT Mixed OpenMP/MPI version (Jaguar)

Packed 576 cores 1-12 threads (Forward and Reverse FFT)

OpenMP/MPI in **PARATEC**

PARATEC 30-40% ZGEMM very amenable to threading

Can aggregate messages in other parts of code

Paratec MPI+OpenMP Performance (Jaguar)

Non FFT part of code "ZGEMM"

FFT Breakdown

CRD PARATEC - Memory Usage

Subspace Diagonalization

Computational Task (CG solver)	Scaling
Orthogonalization	MN ²
Subspace (Krylov) diagonalization	N ³
3d FFTs (most communications)	NMlogM
Nonlocal pseudopotential	MN ² (N ² real space)

<u>Diagonalization Problem:</u> matrix size may be of the order of the number of processors

Solution: run on the number of procs that corresponds to: min. block size of 32-64 and as close as possible to a square processor grid to get best possible speedup for scalapack

VASP code

- Supports many different methods and features (Ultrasoft pseudopotentials, PAW, HF, Hybrid functionals)
- Supports plane wave coeffs. (g vector) and band parallelization
- Default minimization is band by band CG (cannot aggregate messages in FFT, cannot use band parallelization, cannot use BLAS3)
- Residual minimization supports band parallelization (and aggregation in FFT, P. Kent)

Summary and Future Directions

- Fourier electronic structure (3d FFTs) can scale to 16 K processor regime (not limiting factor in scaling!) also allow Qbox, VASP etc. to scale to higher number of procs.
- Future directions: threads on node (for 1d FFTs), overlap calcs/comms etc.

Applications:

New gamma ray detector materials

New ligands for nuclear waste separation

